ZyioLight ${ }^{\oplus}$ SPEC MAF/IGH Dual Color Dual Fusion Probe

Background

The ZytoLight ${ }^{\circledR}$ SPEC MAF/IGH Dual Color Dual Fusion Probe is designed to detect the translocations affecting the MAF gene in the chromosomal region 16q23.2 and the IGH locus in $14 q 32.33$. The translocation $t(14 ; 16)(q 32.3 ; q 23)$ is frequently found in multiple myeloma (MM).
MM is a malignant post-germinal center tumor of somatically-mutated, iso-type-switched plasma cells that accumulate in the bone marrow. It is often preceded by a premalignant state known as monoclonal gammopathy of undetermined significance (MGUS). Five recurrent primary translocations involving the immunoglobulin heavy locus (IGH) have been identified in 40% of MGUS and MM fumors. They include $\dagger(11 ; 14)(q 13.3 ; q 32.3), \dagger(6 ; 14)$ (p21.1;q32.3), t(4;14)(p16.3;q32.3), $t(14 ; 16)(q 32.3 ; q 23)$, and $t(14 ; 20)$ (q32.3;q12), which involve the genes CCND1, CCND3, FGFR3 and NSD2, MAF, and MAFB, respectively. All of these translocations lead to the dysregulation and overexpression of the target genes as a consequence of their juxtaposition to regulatory sequences of the IGH locus. t $(14 ; 16)$ occurs in approximately 5% of MM patients and is associated with a more aggressive clinical outcome. The $16 q 23$ breakpoints have been found to be scattered 550-1280 kb centromerically to the MAF gene within the WWOX gene. Hence, detection of $t(14 ; 16)$ by FISH represents a useful prognostic tool and may aid in therapeutic decision making in MM.

References

Chesi M, et al. (1998) Blood 91: 4457-63.
Fabris S, et al. (2005) Genes Chromosomes Cancer 42: 117-27
Fonseca R, et al. (2009) Leukemia 23: 2210-21.
Gabrea A, et al. (2006) DNA Repair (Amst) 5: 1225-33.

Probe Description

The ZytoLight ${ }^{\circledR}$ SPEC MAF/IGH Dual Color Dual Fusion Probe is composed of: ZyOrange (excitation $547 \mathrm{~nm} /$ emission 572 nm) labeled polynucleotides ($\sim 6.0 \mathrm{ng} / \mu \mathrm{l})$, which target sequences mapping in 16q23.1-q23.2** (chr 16:78,089,697-79,657,277) harboring the MAF gene region. ZyGreen (excitation $503 \mathrm{~nm} /$ emission 528 nm) labeled polynucleotides (~12.0 $\mathrm{ng} / \mu \mathrm{l})$, which target sequences mapping in 14q32.33** (chr14:105,462,169$106,995,000$) harboring the IGH locus. Formamid based hybridization buffer

Ideograms of chromosome 16 (above) and 14 (below) indicating the hybridization locations.

SPEC IGH Probe map (not to scale).

Results

In a normal interphase nucleus, two orange and two green signals are expected. A reciprocal translocation involving two breakpoints splits the two signals and generates a fusion signal on each of the chromosomes involved. The chromosomal regions which are not translocated are indicated by the single orange and green signal, respectively.

SPEC MAF/IGH Dual Color Dual Fusion Probe hybridized to normal interphase cells as indicated by two orange and two green signals in each nucleus.

Bone marrow CD138+ cells with translocation affecting the MAF/IGH loci as indicated by two orange/green fusion signals, a single orange, and a separate green signal in each nucleus.

Kindly provided by Prof. Dr. Oskar A. Haas, Vienna, Austria.

Prod. No.	Product	Label	Tests* (Volume)
Z-2270-50		-	5 (50 pl)
Products			
Z-2099-20	Zytolight FISH-Cytology Implementation Kit $\mathrm{C} \in$ IVD Incl. Cytology Pepsin Solution, $4 \mathrm{ml} ; 20 \mathrm{x}$ Wash Buffer TBS, $50 \mathrm{ml} ; 10 \mathrm{xMgCl}{ }_{2}, 50 \mathrm{ml} ; 10 \mathrm{xPBS}, 50 \mathrm{ml}$; Cytology Stringency Wash Buffer SSC, 500 ml 		20

[^0]
[^0]: * Using 10 pl probe solution per test. IVD labeled products are only available in certain countries. All other countries research use only! Please contact your local dealer for more information. **According to Human Genome Assembly GRCh37/hg19

