

Zyto Light SPEC TP53/ATM Dual Color Probe

REF Z-2159-50

 $\sqrt{\Sigma}$ 5 (0,05 ml)

REF Z-2159-200

20 (0,2 ml)

Für den qualitativen Nachweis von Deletionen der humanen Gene TP53 und ATM mittels Fluoreszenz-*in-situ*-Hybridisierung (FISH)

In-vitro-Diagnostikum gemäß EU Richtlinie 98/79/EC

1. Verwendungszweck

Die <u>ZytoLight SPEC TP53/ATM Dual Color Probe</u> (**PL115**) ist für den qualitativen Nachweis von Deletionen des humanen TP53-Gens sowie des humanen ATM-Gens in zytologischen Präparaten wie beispielsweise Leukämiezellen mittels Fluoreszenz-*in-situ*-Hybridisierung (FISH) bestimmt. Die Sonde ist für die Verwendung in Kombination mit dem <u>ZytoLight FISH-Cytology Implementation Kit</u> (Prod. Nr. Z-2099-20) vorgesehen.

Die Interpretation der Ergebnisse muss im Kontext mit der klinischen Anamnese unter Berücksichtigung weiterer klinischer und pathologischer Daten des Patienten durch einen qualifizierten Pathologen erfolgen.

2. Klinische Relevanz

CLL (chronische lymphatische Leukämie) ist die häufigste Form der Leukämie in der westlichen Bevölkerung. TP53 (tumor protein p53, aka p53) Gendeletionen wurden bei Patienten mit CLL, Multiplem Myelom (MM) sowie akuter myeloischer Leukämie (AML) nachgewiesen. Bei CLL-Patienten wird der Allelverlust des kurzen Arms von Chromosom 17 mit einem Versagen der Therapie mit Alkylanzien sowie mit kurzer Überlebenszeit verbunden. Das ATM (ataxia telangiectasia mutated) ist bei 11q22.3 lokalisiert und codiert eine Proteinkinase, welche an der Zellzyklusregulation inklusive der TP53-Aktivierung beteiligt ist. CLL-Patienten mit 11q-Deletion zeigen eine schnelle Progression der Erkrankung und ein schlechteres Überleben. Daher ist FISH in Kombination mit anderen biologischen Markern, der Morphologie sowie klinischen Daten ein wertvolles Hilfsmittel, um das Fortschreiten der Erkrankung sowie das allgemeine Überleben bei CLL-Patienten vorherzusagen.

3. Prinzip der Methode

Die Fluoreszenz-*in-situ*-Hybridisierung (FISH) erlaubt den Nachweis und die Visualisierung von spezifischen Nukleinsäuresequenzen in Zellpräparationen. Fluoreszenzmarkierte DNA-Fragmente, sogenannte FISH-Sonden, und deren komplementäre Zielsequenzen in den Präparationen werden co-denaturiert und können anschließend während der Hybridisierung binden. Danach werden unspezifische und ungebundene Sondenfragmente durch Stringenzwaschschritte entfernt.

Nach der Gegenfärbung der DNA mit DAPI werden hybridisierte Sondenfragmente mit einem Fluoreszenzmikroskop visualisiert, welches mit für die Fluorochrome spezifischen Anregungs- und Emissionsfiltern ausgestattet ist, mit denen die FISH-Sondenfragmente direkt markiert wurden.

4. Enthaltene Komponenten

Die Zyto Light SPEC TP53/ATM Dual Color Probe besteht aus:

- ZyOrange (Anregung 547 nm/Emission 572 nm) markierten Polynukleotiden (~4,5 ng/μl), die gegen Sequenzen in 17p13.1* (chr17:7,495,749-7,663,022) gerichtet sind, welche die TP53-Genregion enthalten (siehe Abb. 1).
- ZyGreen (Anregung 503 nm/Emission 528 nm) markierten Polynukleotiden (~10,0 ng/µl), die gegen Sequenzen in 11q22.3* (chr11:107,957,618-108,380,921) gerichtet sind, welche die ATM-Genregion enthalten (siehe Abb. 1).
- Hybridisierungsbuffer auf Basis von Formamid

*nach Human Genome Assembly GRCh37/hg19

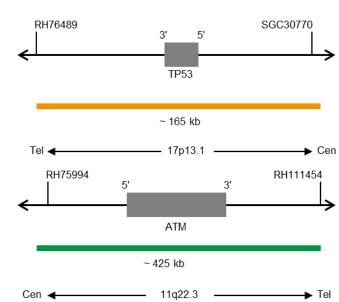


Abb. 1: Oben: SPEC TP53 Sondenlokalisation; Unten: SPEC ATM Sondenlokalisation (nicht maßstabsgetreu)

Die <u>Zyto*Light* SPEC TP53/ATM Dual Color Probe</u> ist verfügbar in zwei Größen:

- Z-2159-50: 0,05 ml (5 Reaktionen von je 10 μl)
- Z-2159-200 0,2 ml (20 Reaktionen von je 10 μl)

5. Benötigte, aber nicht bereitgestellte Materialien

- Zyto Light FISH-Cytology Implementation Kit (Prod. Nr. Z-2099-20)
- Positive und negative Kontrollproben
- Objektträger, unbeschichtet
- Wasserbad (70°C)
- Hybridizer oder Wärmeplatte
- Hybridizer oder Feuchtekammer im Hybridisierungsofen
- Verstellbare Pipetten (10 μl, 25 μl)
- Küvetten oder Färbetröge
- Stoppuhr
- Kalibriertes Thermometer
- Ethanol oder denaturierter Alkohol
- 37% Formaldehyd, säurefrei, oder 10% Formalin, neutral gepuffert
- 2x Natriumcitrat Salzlösung (SSC), z.B. aus <u>20x SSC Solution</u> (Prod. Nr. WB-0003-50)
- Deionisiertes oder destilliertes Wasser
- Deckgläser (22 mm x 22 mm, 24 mm x 60 mm)
- Naturkautschuk-Klebstoff, z.B. <u>Fixogum Rubber Cement</u> (Prod. Nr. E-4005-50/-125), oder Ähnliches
- Regelmäßig gewartetes Fluoreszenzmikroskop (400-1000x)
- Immersionsöl, geeignet für Fluoreszenzmikroskopie
- Entsprechende Filtersätze

1/4 2019-08-14

6. Lagerung und Handhabung

Bei 2-8°C in aufrechter Position und lichtgeschützt lagern. Vor Licht geschützt verwenden. Unmittelbar nach Gebrauch wieder unter Lagerbedingungen aufbewahren. Keine Reagenzien nach Ablauf des auf dem Etikett angegebenen Verfallsdatums verwenden. Das Produkt ist bei sachgemäßer Handhabung bis zu dem auf dem Etikett angegebenen Verfallsdatum stabil.

7. Warnhinweise und Vorsichtsmaßnahmen

- Gebrauchsanweisung vor der Verwendung lesen!
- Reagenzien nach Ablauf des Verfallsdatums nicht mehr verwenden!
- Dieses Produkt enthält Substanzen (in geringen Konzentrationen und Volumina), welche gesundheitsschädlich und potentiell infektiös sind. Jeder direkte Kontakt mit den Reagenzien muss vermieden werden. Entsprechende Schutzmaßnahmen (Verwendung von Einmalhandschuhen, Schutzbrille und Laborbekleidung) sind zu ergreifen!
- Sollten Reagenzien mit der Haut in Kontakt kommen, die betroffenen Stellen sofort mit viel Wasser abspülen!
- Ein Sicherheitsdatenblatt ist auf Anfrage für den beruflichen Anwender verfügbar.
- Die Reagenzien nicht wiederverwenden.
- Kreuzkontaminationen der Präparate vermeiden, da diese zu fehlerhaften Ergebnissen führen.
- Die Sonde sollte nicht für längere Zeit dem Licht, insbesondere intensivem Licht, ausgesetzt werden. Das bedeutet, falls möglich sollten alle Arbeitsschritte im Dunkeln und/oder unter Verwendung von lichtundurchlässigen Behältnissen durchgeführt werden!

Gefahren- und Sicherheitshinweise:

Die gefahrbestimmende Komponente ist Formamid.

H351

P405

Gefahr

	O Company	
H360FD	Kann die Fruchtbarkeit beeinträchtigen. Kann das Kind im Mutterleib schädigen.	
H373	Kann die Organe schädigen bei längerer oder wiederholter Exposition.	
P201	Vor Gebrauch besondere Anweisungen einholen.	
P202	Vor Gebrauch alle Sicherheitshinweise lesen und verstehen.	
P260	Staub/Rauch/Gas/Nebel/Dampf/Aerosol nicht einatmen.	
P280	Schutzhandschuhe/Schutzkleidung/Augenschutz/ Gesichtsschutz tragen.	
P308+P313	BEI Exposition oder falls betroffen: Ärztlichen Rat	

Kann vermutlich Krebs erzeugen.

8. Einschränkungen

Für die Verwendung als In-vitro-Diagnostikum.

Unter Verschluss aufbewahren.

- Nur für die professionelle Anwendung.
- Die klinische Interpretation jeglicher positiven Färbung bzw. deren Abwesenheit muss im Kontext mit der klinischen Anamnese, Morphologie, anderer histopathologischer Kriterien sowie weiterer diagnostischer Tests erfolgen. Es liegt in der Verantwortung eines qualifizierten Pathologen, mit FISH Sonden, Reagenzien, Diagnose-Panels und den zur Erstellung von gefärbten Präparaten verwendeten Methoden vertraut zu sein. Die Färbung ist in einem zertifizierten, lizenzierten Labor unter Aufsicht eines Pathologen durchzuführen, der für die Auswertung der Färbepräparate und für die Sicherstellung der Eignung von positiven und negativen Kontrollen verantwortlich ist.
- Die Färbung der Präparate, insbesondere die Signalintensität und die Hintergrundfärbung, ist abhängig von der Behandlung und Prozessierung der Präparate vor der Färbung. Unsachgemäßes Fixieren, Einfrieren, Auftauen, Waschen, Trocknen, Erhitzen, Schneiden oder Kontamination mit anderen Präparaten oder Flüssigkeiten können

Artefakte oder falsche Ergebnisse verursachen. Inkonsistente Ergebnisse können von Variationen bei Fixierungs- und Einbettungsverfahren sowie von inhärenten Unregelmäßigkeiten innerhalb des Präparates resultieren.

- Die Sonde ist nur für den Nachweis der Loci, die in 4. "Enthaltene Komponenten" beschrieben werden, zu verwenden.
- Die Leistung wurde unter Verwendung der in dieser Gebrauchsanweisung beschriebenen Verfahren validiert. Abweichungen von diesen Verfahren können die Leistung beeinflussen und müssen vom Anwender validiert werden.

9. Störsubstanzen

Rote Blutzellen innerhalb des Präparates können Autofluoreszenz verursachen, welche die Signalerkennung behindert.

10. Vorbereitung der Präparate

Die Präparatevorbehandlung ist wie in der Gebrauchsanweisung des Zyto Light FISH-Cytology Implementation Kits beschrieben durchzuführen.

11. Vorbereitung der Reagenzien

Das Produkt ist gebrauchsfertig. Kein Rekonstituieren, Mischen oder Verdünnen ist notwendig. Die Sonde vor der Anwendung lichtgeschützt auf Raumtemperatur (18-25°C) bringen. Vor dem Öffnen durch Vortexen mischen und kurz herunterzentrifugieren.

12. Durchführung

Vorbehandlung der Präparate

Die Präparatevorbehandlung ist wie in der Gebrauchsanweisung des Zyto Light FISH-Cytology Implementation Kits beschrieben durchzuführen.

Denaturierung und Hybridisierung

- 1. $10 \,\mu$ l der Sonde auf jedes der vorbehandelten Präparate pipettieren.
- Die Präparate mit 22 mm x 22 mm Deckgläsern abdecken (Einschluss von Luftbläschen vermeiden) und das Deckglas versiegeln.

Wir empfehlen die Verwendung von Naturkautschuk-Klebstoff (z.B. Fixogum) zum Versiegeln.

- Die Objektträger auf einer Wärmeplatte oder in einem Hybridizer platzieren und die Präparate für 5 min bei 72°C denaturieren.
- Die Objektträger in eine Feuchtekammer überführen und über Nacht bei 37°C hybridisieren (z.B. in einem Hybridisierungsofen).

Es ist essentiell, dass die Präparate während des Hybridisierungsschritts nicht austrocknen.

Post-Hybridisierung

Die Post-Hybridisierung (Waschen, Gegenfärbung, Fluoreszenzmikroskopie) gemäß der Gebrauchsanweisung des <u>Zyto Light FISH-Cytology Implementation Kits</u> durchführen.

13. Interpretation der Ergebnisse

Bei Verwendung von geeigneten Filtersätzen erscheinen die Hybridisierungssignale der Sonde orange (TP53-Genregion) und grün (ATM- Genregion).

Normale Situation: In Interphasen von normalen Zellen oder Zellen ohne eine Deletion der entsprechenden Genregionen erscheinen zwei orange, zwei blaue und zwei grüne Signale (siehe Abb. 2).

Aberrante Situation: In einer Zelle mit Deletion, die die TP53-Genregion betrifft, kann eine reduzierte Anzahl oranger Signale beobachtet werden. Deletionen, welche nur Teile der TP53-Genregion betreffen, können zu einem normalen Signalmuster mit orangen Signalen reduzierter Größe führen. In einer Zelle mit Deletion, die die ATM-Genregion betrifft, kann eine reduzierte Anzahl grüner Signale beobachtet werden. Deletionen, welche nur Teile der ATM-Genregion betreffen, können zu einem normalen Signalmuster mit grünen Signalen reduzierter Größe führen (siehe Abb. 2).

2/4 2019-08-14

Sich überlagernde Signale können als gelbe Signale erscheinen.

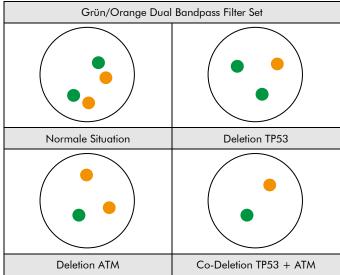


Abb. 2: Zu erwartende Ergebnisse in normalen und aberranten Zellkernen

Bei einigen aberranten Präparaten kann eine abweichende Signalverteilung beobachtet werden, welche zu einem anderen Signalmuster als zuvor beschrieben führen kann. Dies kann auf abweichende Rearrangierungen hinweisen. Unerwartete Signalmuster sollten näher untersucht werden.

Bitte beachten:

- Aufgrund von dekondensiertem Chromatin k\u00f6nnen einzelne FISH-Signale als kleine Signal-Cluster erscheinen. Daher sollten zwei oder drei Signale der gleichen Gr\u00f6\u00dfe mit einer Distanz von ≤ 1 Signaldurchmesser als ein Signal gewertet werden.
- Sich überlagernde Zellkerne nicht auswerten.
- Über-verdaute Zellkerne nicht auswerten (erkennbar als dunkle Areale im Zellkern).
- Keine Auswertung von Zellen mit starker Eigenfluoreszenz, welche die Signalerkennung behindert.
- Ein negatives oder unspezifisches Ergebnis kann durch verschiedene Faktoren verursacht werden (siehe Kapitel 17).
- Um die Ergebnisse korrekt zu interpretieren, muss der Anwender das Produkt vor der Anwendung in diagnostischen Verfahren unter Berücksichtigung nationaler und/oder internationaler Richtlinien validieren.

14. Empfohlene Qualitätskontrollverfahren

Um die korrekte Leistung der verwendeten Präparate und Testreagenzien zu überwachen, sollte jeder Test von internen und externen Kontrollen begleitet werden. Falls interne und/oder externe Kontrollen keine adäquate Färbung zeigen, müssen die Ergebnisse der Patientenproben als ungültig angesehen werden.

Interne Kontrolle: Nicht-neoplastische Zellen innerhalb des Präparates, die ein normales Signalmuster aufweisen.

Externe Kontrolle: Validierte positive und negative Kontrollproben.

15. Leistungsmerkmale

Genauigkeit: Die Lokalisation der Hybridisierung der Sonde wurde auf Metaphasen eines karyotypisch unauffälligen Mannes überprüft. Die Sonde hybridisierte in allen getesteten Präparaten nur an die erwarteten Loci. Es wurden keine zusätzlichen Signale oder Kreuzhybridisierungen beobachtet. Daher wurde eine Genauigkeit von 100% berechnet.

Analytische Sensitivität: Für die Bestimmung der analytischen Sensitivität wurde die Sonde auf Metaphasen von karyotypisch unauffälligen Männern getestet. Sämtliche Zellkerne zeigten das erwartete unauffällige Signalmuster in allen getesteten Präparaten. Daher wurde eine analytische Sensitivität von 100% berechnet.

Analytische Spezifität: Für die Bestimmung der analytischen Spezifität wurde die Sonde auf Metaphasen von karyotypisch unauffälligen Männern getestet. In sämtlichen getesteten Präparaten hybridisierten alle Signale nur an die erwarteten Zielbereiche und an keine weiteren Loci. Daher wurde eine analytische Spezifität von 100% berechnet.

16. Entsorgung

Die Entsorgung der Reagenzien muss in Übereinstimmung mit den örtlichen Vorschriften erfolgen.

17. Fehlerbehebung

Jede Abweichung von der Gebrauchsanweisung kann zu schwachen bis gar keinen Färbungen führen.

Schwache oder keine Signale

Mögliche Ursache	Lösung
Es sind keine Zielsequenzen vorhanden	Geeignete Kontrollen verwenden
Temperatur der Proteolyse, Denaturierung, Hybridisierung oder der Stringenzwaschung nicht korrekt	Die Temperatur aller technischen Geräte mit einem kalibrierten Thermometer überprüfen
Proteolytische Vorbehandlung nicht optimal	Die Inkubationszeit mit Pepsin optimieren, falls notwendig erhöhen oder reduzieren
Verdunstung der Sonde	Bei der Nutzung eines Hybridizers ist die Verwendung von feuchten Vliesstreifen/Wassertanks erforderlich. Bei der Nutzung eines Hybridisierungsofens muss eine Feuchtekammer verwendet werden. Zusätzlich sollte das Deckglas, z.B. mit Fixogum, vollständig versiegelt werden, um ein Austrocknen der Präparat während der Hybridisierung zu verhindern.
Zu gering konzentrierter Stringenzwaschpuffer	Die Konzentration des Stringenzwaschpuffers überprüfen
Alte Dehydrierungslösungen	Frische Dehydrierungslösungen ansetzen
Fluoreszenzmikroskop falsch eingestellt	Einstellungen überprüfen
Ungeeignete Filtersätze verwendet	Für die Fluorochrome der Sonde geeignete Filtersätze verwenden. Triple-Bandpass-Filtersätze liefern im Vergleich zu Single- oder Dual- Bandpass-Filtersätzen weniger Licht. Daher können die Signale unter Verwendung von Triple-Bandpass- Filtersätzen schwächer erscheinen.
Schädigungen der Sonden/ Fluorophore durch Licht	Hybridisierung und Waschschritte im Dunkeln durchführen

Kreuzhybridisierungssignale, Hintergrundsignale

Mögliche Ursache	Lösung
Proteolytische Vorbehandlung zu stark	Die Inkubationszeit mit Pepsin reduzieren
Sondenvolumen pro Fläche zu hoch	Das Volumen der Sonde pro Präparat/Fläche reduzieren, Sonde tropfenweise verteilen, um lokale Konzentration zu vermeiden
Objektträger sind vor der Hybridisierung auf Raumtemperatur abgekühlt	Objektträger zügig auf 37°C überführen
Zu hoch konzentrierter Stringenzwaschpuffer	Die Konzentration des Stringenzwaschpuffers überprüfen
Temperatur der Waschschritte nach Hybridisierung ist zu gering	Temperatur überprüfen und, wenn nötig, erhöhen

3/4

Vers. 1.2 DE

Präparate zwischen den einzelnen	Austrocknung durch Versiegeln der Objektträger und durch das Durchführen der Inkubation in feuchter Umgebung verhindern
----------------------------------	--

Degradierte Morphologie

Mögliche Ursache	Lösung
Proteolytische Vorbehandlung nicht optimal ausgeführt	Die Inkubationszeit mit Pepsin optimieren, falls notwendig erhöhen oder reduzieren
Unzureichende Trocknung vor Applikation der Sonde	Lufttrocknung verlängern

Schwache Gegenfärbung

Mögliche Ursache	Lösung
Gering konzentrierte DAPI- Lösung	DAPI/DuraTect-Solution (ultra) (Prod. Nr. MT-0008-0.8) stattdessen verwenden
Inkubationszeit mit DAPI zu kurz	Inkubationszeit mit DAPI anpassen

18. Literatur

- Chang H, et al. (1999) Leukemia 13: 105-9.
- Dal Bo M, et al. (2011) Genes Chromosomes Cancer 50: 633-43.
- Kievits T, et al. (1990) Cytogenet Cell Genet 53: 134-6.
- Ouillette P, et al. (2011) Clin Cancer Res 21: 6778-90.
- Pettitt AR, et al. (2001) Blood 98: 814-22.
- Ripollés L, et al. (2006) Cancer Genet Cytogenet 171: 57-64.
- Shanafelt TD, et al. (2006) Ann Intern Med 145: 435-47.
- Stilgenbauer S, et al. (2002) *Leukemia* 16: 993-1007.
- Wilkinson DG: In Situ Hybridization, A Practical Approach, Oxford University Press (1992) ISBN 0 19 963327 4.

Unsere Experten stehen Ihnen für Ihre Fragen zur Verfügung. Bitte kontaktieren Sie helptech@zytovision.com

ZytoVision GmbH Fischkai 1 27572 Bremerhaven/Deutschland Telefon: +49 471 4832-300 Fax: +49 471 4832-509

www.zytovision.com Email: info@zytovision.com

Warenzeichen:

ZytoVision® und ZytoLight® sind Warenzeichen der ZytoVision GmbH.

4/4